Itnewsrussia.ru

Анализ современных технологий

Термопреобразователи сопротивления

Принцип действия термопреобразователей сопротивления (терморезисторов) основан на изменении электрического сопротивления проводников и полупроводников в зависимости от температуры (рассмотрен ранее).

Платиновые терморезисторы предназначены для измерения температур в пределах от -260 до 1100 0С. Широкое распространение на практике получили более дешевые медные терморезисторы, имеющие линейную зависимость сопротивления от температуры.

Недостатком меди является небольшое ее удельное сопротивление и легкая окисляемость при высоких температурах, вследствие чего конечный предел применения медных термометров сопротивления ограничивается температурой 180 0C. По стабильности и воспроизводимости характеристик медные терморезисторы уступают платиновым. Никель используется в недорогих датчиках для измерения в диапазоне комнатных температур.

Полупроводниковые терморезисторы (термисторы) имеют отрицательный или положительный температурный коэффициент сопротивления, значение которого при 20 0C составляет (2…8)*10-2 (0C)-1, т.е. на порядок больше, чем у меди и платины. Полупроводниковые терморезисторы при весьма малых размерах имеют высокие значения сопротивления (до 1 МОм). В качестве полупров. материала используются оксиды металлов: полупроводниковые терморезисторы типов КМТ - смесь окислов кобальта и марганца и ММТ - меди и марганца.

Полупроводниковые датчики температуры обладают высокой стабильностью характеристик во времени и применяются для изменения температур в диапазоне от -100 до 200 0С.

Термоэлектрические преобразователи (термопары) - принцип действия термопар основан на термоэлектрическом эффекте, который состоит в том, что при наличии разности температур мест соединений (спаев) двух разнородных металлов или полупроводников в контуре возникает электродвижущая сила, называемая термоэлектродвижущей (сокращенно термо-ЭДС). В определенном интервале температур можно считать, что термо-ЭДС прямо пропорциональна разности температур ΔT = Т1 - Т0 между спаем и концами термопары.

Соединенные между собой концы термопары, погружаемые в среду, температура которой измеряется, называют рабочим концом термопары. Концы, которые находятся в окружающей среде, и которые обычно присоединяют проводами к измерительной схеме, называют свободными концами. Температуру этих концов необходимо поддерживать постоянной. При этом условии термо-ЭДС Ет будет зависеть только от температуры T1 рабочего конца.

Uвых

=

= С(Т1

- Т0),

где С - коэффициент, зависящий от материала проводников термопары.

Создаваемая термопарами ЭДС сравнительно невелика: она не превышает 8 мВ на каждые 100 0С и обычно не превышает по абсолютной величине 70 мВ. Термопары позволяют измерять температуру в диапазоне от -200 до 2200 0С.

Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель.

Термопары имеют следующие преимущества: простота изготовления и надёжность в эксплуатации, дешевизна, отсутствие источников питания и возможность измерений в большом диапазоне температур.

Наряду с этим термопарам свойственны и некоторые недостатки - меньшая, чем у терморезисторов, точность измерения, наличие значительной тепловой инерционности, необходимость введения поправки на температуру свободных концов и необходимость в применении специальных соединительных проводов.

Инфракрасные датчики (пирометры) - используют энергию излучения нагретых тел, что позволяет измерять температуру поверхности на расстоянии. Пирометры делятся на радиационные, яркостные и цветовые.

Радиационные пирометры используются для измерения температуры от 20 до 25000С, причем прибор измеряет интегральную интенсивность излучения реального объекта. Перейти на страницу: 1 2

Популярное:

Непрерывный и квантованный объекты управления в пространстве состояний 1. Задана линейная стационарная дискретная система (параметры непрерывных динамических звеньев в таблице 1 Приложения 2). и . Рисунок 1. Структурная схема линейной стационарной дискретной системы . Составить описание непрерывного объекта управления в пространстве состояний. . Выбрать период дискретности и ...