Itnewsrussia.ru

Анализ современных технологий

Технологические процессы производства ППИС

В настоящее время в производстве полупроводниковых приборов, интегральных микросхем на биполярных транзисторах и микросхем на МДП-транзисторах господствующее положение занимает планарная технология. Существует более сотни различных ее модификаций. Движущей силой разработок новых вариантов планарной технологии явилась необходимость повышения: плотности размещения полупроводниковых приборов на кристалле; быстродействия микросхем; точности обработки материалов, качества и надежности микросхем и снижения их себестоимости. Совокупность технологических операций любого варианта планарной технологии направлена на: формирование полупроводниковой структуры, содержащей необходимые p-n переходы; изоляцию элементов друг от друга (для интегральных микросхем на биполярных транзисторах); формирование межэлементных и внешних электрических связей; осуществление защиты полупроводникового прибора и интегральной микросхемы от внешних воздействий.

Первые микросхемы начала 60-х годов содержали всего 6 .8 транзисторов, диодов и резисторов, которых хватало для выполнения микросхемой простой логической функции. Для реализации сложных функциональных блоков ЭВМ (процессор) требуется несколько сотен таких микросхем. Первые микросхемы выполнялись на кремниевых кристаллах площадью в несколько квадратных миллиметров, и минимальные геометрические размеры элементов топологии не превышали 20 мкм.

За прошедшие годы полупроводниковая технология шагнула далеко вперед. Площадь кристалла увеличилась более чем в 10 раз. К середине 1970 г. минимальный проектный геометрический размер элементов микросхем уменьшился до 10 мкм, в конце 70-х годов обычным для производства микросхем стал размер 4 мкм, сейчас получены экспериментальные образцы микросхем с минимальным размером 1,5 мкм и даже 1 мкм.

Сегодняшняя полупроводниковая технология позволяет создавать на одном кристалле 10 . 10 соединенных между собой элементов - это высшая из достигнутых степеней интеграции элементов в одном монолитном кусочке материала.

В настоящее время достижения технологии представляют собой всего лишь основу для дальнейшего роста быстродействия, степени интеграции микросхем (как минимум еще на порядок) и перехода на субмикронные минимальные геометрические размеры элементов (соизмеримые с размерами некоторых бактерий и молекул ДНК)

Большая часть задач, возникающих при разработке интегральных схем, в какой-то мере включает выбор компромиссного решения с учетом ряда противоречивых требований.

Поскольку все элементы одной ИС формируются в одном ПП кристалле, важной задачей является обеспечение между ними надёжной изоляции.

Наиболее простой является изоляция р-n переходом (диодная изоляция). В этом случае в кристаллической подложке из кремния с проводимостью р-типа, создают n-области («карманы»), в которых в дальнейшем формируют необходимые пассивные или активные элементы. Электрический переход между «карманом» и подложкой поддерживается в работающей ИС под обратным напряжением (на подложку подаётся отрицательное напряжение в несколько В). Переход в этом случае имеет очень высокое сопротивление (несколько МОм), играя роль изоляции.

Второй вид изоляции также предполагает наличие «карманов» для последующего формирования в них нужных элементов, но в этом случае между «карманом» и подложкой наносится тонкий диэлектрический слой SiO. Используют также и комбинированную изоляцию р-n переходом и диэлектриком (Изопланар I и Изопланар II).

В данной работе рассмотрены ППИС с изоляцией р-n переходом, которые лучше других схем удовлетворяют требованиям массового производства при условии, что допустимы свойственные им разброс и температурная нестабильность параметров пассивных элементов и паразитные элементы (например, ИС для бытовой аппаратуры).

Последовательность операций планарно-эпитаксиальной технологии производства биполярных полупроводниковых ИМС с изоляцией элементов p-n переходами приведена на рис. 2

Перейти на страницу: 1 2 3 4

Популярное:

Оптимизация интегрированной системы управления глюкозо-паточным комбинатом Автоматизация технологических процессов - этап комплексной механизации, характеризуемый освобождением человека от непосредственного выполнения функций управления технологическими процессами (ТП) и передачей этих функций автоматическим устройствам. При автоматизации ТП получение, преобразование, передача и использование энергии, мате ...