Itnewsrussia.ru

Анализ современных технологий

Датчик для измерения давления

Для непрерывного измерения давления и передачи его значения в системы учета и контроля применяются датчики давления со стандартными выходными сигналами тока или (существенно реже) напряжения. Датчики могут измерять избыточное или абсолютное давление, а также разряжение. Это зависит от конструкции датчика. Абсолютное давление это сумма избыточного и атмосферного давлений.

Датчик давления состоит из сенсора, модуля преобразования сигнала сенсора, дисплея и корпуса. В настоящее время наиболее распространены тензометрические сенсоры с металлической мембраной. Все более широкое применение находят емкостные сенсоры с мембраной из сверхчистой керамики (99,9% Al2O3), например, фирмы Endress+Hauser и пьезорезистивные сенсоры, например, фирмы Honeywell.

Принцип действия тензосенсоров с металлической мембраной основан на измерении деформации тензорезисторов, сформированных в тонкой пленке кремния на сапфировой подложке (КНС), припаянной твердым припоем к титановой мембране. Иногда вместо кремниевых тензорезисторов используют металлические: медные, никелевые и др. Принцип действия тензорезисторов основан на явлении тензоэффекта в материалах, который выражается в том, что при линейном удлинении проводника его электрическое сопротивление увеличивается. Тензорезисторы соединены в мост Уитсона. Под действием давления измеряемой среды мембрана прогибается, тензорезисторы деформируются. Их сопротивление меняется, что приводит к разбалансу моста. Разбаланс имеет линейную зависимость от степени деформации резисторов и, следовательно, от приложенного к мембране давления. Разбаланс моста преобразуется электроникой датчика в выходной аналоговый сигнал и в цифровой код для вывода данных на дисплей. Мембрана и корпус сенсора образуют герметичную конструкцию, заполненную внутри кремнийорганической жидкостью.

Несмотря на множество достоинств, таких как: высокая степень защиты от воздействия агрессивных сред, высокая предельная температуры измеряемой среды, низкая стоимость, отлаженное серийное производство датчики давления с тензосенсорами и металлической мембраной имеют ряд недостатков. В частности, неустранимую временную нестабильность передаточной характеристики (давление-ток) и существенные гистерезисные эффекты от воздействия давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с корпусом сенсора. При эксплуатации датчиков с сенсорами данного типа практически всегда наблюдается эффект прямого и обратного хода. Например, если на датчик со шкалой 0-10 Bar и выходным сигналом 4-20 mA подать давление 5 Bar, плавно увеличивая его с 0 значения то установиться, допустим, выходной ток 11,5 mA. Если же, на тот же датчик подать давление 5 Bar, но теперь плавно уменьшая с 10 Bar, то выходной сигнал будет уже 12,5 mA. Этот эффект связан с упругими свойствами металлической мембраны.

Работа емкостных сенсоров датчиков давления основана на зависимости емкости конденсатора от расстояния между его обкладками. Чем меньше расстояние, тем больше емкость. Роль одной обкладки (подвижной) выполняет металлизация внутренней стороны мембраны, роль второй обкладки (неподвижной) - металлизация основания сенсора. Подвижная мембрана изготавливается из сверхчистой керамики, кремния или упругого металла. При изменении давления процесса (рабочей среды) мембрана с обкладкой деформируется, расстояние между ней и основанием сенсора изменяется и происходит изменение емкости.

Достоинством емкостного сенсора из сверхчистой керамики является простота конструкции, высокая точность и временная стабильность показаний, возможность измерять низкие давления и слабый вакуум благодаря отсутствию заполняющего масла. Керамическая мембрана обладает коррозионной стойкостью к химически-агрессивным средам и стойкостью к истиранию. Кроме того у емкостных керамических сенсоров отсутствует эффект прямого и обратного хода. Они в меньшей степени подвержены воздействию гидравлических ударов, так как мембрана в этом случае просто прижимается к основанию сенсора. Перейти на страницу: 1 2 3

Популярное:

Операционный микроэлектронный усилитель Современная радиоэлектронная аппаратура (РЭА) характеризуется тремя основными чертами: резким возрастанием количества компонентов и в связи с этим значительным уплотнением аппаратуры; мобильностью, так как РЭА устанавливается на объектах, движущихся с космическими скоростями; количественным ростом выпуска аппаратуры и, след ...